Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.690
Filtrar
1.
Food Chem X ; 22: 101380, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665633

RESUMO

In order to re-utilize the residual from the distillation of the Chinese wolfberry wine and reduce the environmental pollution, the residual is firstly filtered by the ceramic membrane of 50 nm, then the Cu (II) has transferred from the distillation is removed using the ion exchange resin, and the treated solution is recombined with the distilled liquor to make the Chinese wolfberry brandy and the comparison has conducted on the physicochemical properties, antioxidant activity and flavor compounds between the recombined brandy and the finished brandy. The results indicate that the Cu (II) was effectively removed by ceramic membrane combined with the D401 resin. Compared with finished brandy, the recombined brandy contains high contents of polysaccharides, phenols and flavonoids, thus contributing to the improvement of antioxidant capacity. The gas chromatography-ion mobility spectrometry (GC-IMS) reveals that 25 volatile compounds like esters and alcohols have identified in the brandy samples, and the differences are significant between the recombined and the finished brandy. In summary, the distilled residual from the Chinese wolfberry wine might be re-used after the appropriate treatment so as to reduce the discharge and environmental pollution.

2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 249-255, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597085

RESUMO

Complicated crown root fracture is a serious combined fracture of the enamel, dentin, and cementum in dental trauma. The treatment method is complicated. During the procedure, the condition of pulp, periodontal, and tooth body should be thoroughly evaluated, and a multidisciplinary approach combined with sequential treatment is recommended. This case reported the different treatment and repair processes of one case of two affected teeth after complicated crown root fracture of upper anterior teeth, including regrafting of broken crown after flap surgery at the first visit, direct resin repair to remove broken fragments, and pulp treatment and post-crown repair at the second visit. After 18 months of follow-up, the preservation treatment of the affected teeth with complicated crown root fracture was achieved. Therefore, fragment reattachment and post-crown restoration are feasible treatment options for children with complicated crown root fracture.


Assuntos
Fraturas dos Dentes , Raiz Dentária , Criança , Humanos , Incisivo/lesões , Coroa do Dente/lesões , Fraturas dos Dentes/terapia , Exposição da Polpa Dentária/terapia , Coroas
3.
Nanomicro Lett ; 16(1): 177, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647738

RESUMO

Reversible protonic ceramic cells (RePCCs) hold promise for efficient energy storage, but their practicality is hindered by a lack of high-performance air electrode materials. Ruddlesden-Popper perovskite Sr3Fe2O7-δ (SF) exhibits superior proton uptake and rapid ionic conduction, boosting activity. However, excessive proton uptake during RePCC operation degrades SF's crystal structure, impacting durability. This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes, incorporating Sr-deficiency and Nb-substitution to create Sr2.8Fe1.8Nb0.2O7-δ (D-SFN). Nb stabilizes SF's crystal, curbing excessive phase formation, and Sr-deficiency boosts oxygen vacancy concentration, optimizing oxygen transport. The D-SFN electrode demonstrates outstanding activity and durability, achieving a peak power density of 596 mW cm-2 in fuel cell mode and a current density of - 1.19 A cm-2 in electrolysis mode at 1.3 V, 650 °C, with excellent cycling durability. This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.

4.
J Funct Biomater ; 15(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38667548

RESUMO

Zirconia ceramic implants are commercially available from a rapidly growing number of manufacturers. Macroscopic and microscopic surface design and characteristics are considered to be key determining factors in the success of the osseointegration process. It is, therefore, crucial to assess which surface modification promotes the most favorable biological response. The purpose of this study was to conduct a comparison of modern surface modifications that are featured in the most common commercially available zirconia ceramic implant systems. A review of the currently available literature on zirconia implant surface topography and the associated bio-physical factors was conducted, with a focus on the osseointegration of zirconia surfaces. After a review of the selected articles for this study, commercially available zirconia implant surfaces were all modified using subtractive protocols. Commercially available ceramic implant surfaces were modified or enhanced using sandblasting, acid etching, laser etching, or combinations of the aforementioned. From our literature review, laser-modified surfaces emerged as the ones with the highest surface roughness and bone-implant contact (BIC). It was also found that surface roughness could be controlled to achieve optimal roughness by modifying the laser output power during manufacturing. Furthermore, laser surface modification induced a very low amount of preload microcracks in the zirconia. Osteopontin (OPN), an early-late osteogenic differentiation marker, was significantly upregulated in laser-treated surfaces. Moreover, surface wettability was highest in laser-treated surfaces, indicating favorable hydrophilicity and thus promoting early bone forming, cell adhesion, and subsequent maturation. Sandblasting followed by laser modification and sandblasting followed by acid etching and post-milling heat treatment (SE-H) surfaces featured comparable results, with favorable biological responses around zirconia implants.

5.
Membranes (Basel) ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38668108

RESUMO

In recent years, the use of biogas as a natural gas substitute has gained great attention. Typically, in addition to methane (CH4), biogas contains carbon dioxide (CO2), as well as small amounts of impurities, e.g., hydrogen sulfide (H2S), nitrogen (N2), oxygen (O2) and volatile organic compounds (VOCs). One of the latest trends in biogas purification is the application of membrane processes. However, literature reports are ambiguous regarding the specific requirement for biogas pretreatment prior to its upgrading using membranes. Therefore, the main aim of the present study was to comprehensively examine and discuss the most recent achievements in the use of single-membrane separation units for biogas upgrading. Performing a literature review allowed to indicate that, in recent years, considerable progress has been made on the use of polymeric membranes for this purpose. For instance, it has been documented that the application of thin-film composite (TFC) membranes with a swollen polyamide (PA) layer ensures the successful upgrading of raw biogas and eliminates the need for its pretreatment. The importance of the performed literature review is the inference drawn that biogas enrichment performed in a single step allows to obtain upgraded biogas that could be employed for household uses. Nevertheless, this solution may not be sufficient for obtaining high-purity gas at high recovery efficiency. Hence, in order to obtain biogas that could be used for applications designed for natural gas, a membrane cascade may be required. Moreover, it has been documented that a significant number of experimental studies have been focused on the upgrading of synthetic biogas; meanwhile, the data on the raw biogas are very limited. In addition, it has been noted that, although ceramic membranes demonstrate several advantages, experimental studies on their applications in single-membrane systems have been neglected. Summarizing the literature data, it can be concluded that, in order to thoroughly evaluate the presented issue, the long-term experimental studies on the upgrading of raw biogas with the use of polymeric and ceramic membranes in pilot-scale systems are required. The presented literature review has practical implications as it would be beneficial in supporting the development of membrane processes used for biogas upgrading.

6.
Turk J Orthod ; 37(1): 30-35, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38556950

RESUMO

Objective: This in vitro study aimed to evaluate the effectiveness of pretreatment with a self-etching primer for bonding aligner attachments to lithium disilicate (LD) and monolithic zirconia (MZ) ceramics. Methods: Forty ceramics, including LD (n=20) and MZ (n=20), were divided into four study groups according to the surface pretreatments: LD specimens pretreated with universal primer (Monobond Plus, MP) after hydrofluoric acid etching (Group 1); MZ ceramics pretreated with MP after sandblasting (Group 2); LD ceramics pretreated with self-etching ceramic primer (Monobond etch & prime, MEP) (Group 3); and MZ ceramics pretreated with MEP after sandblasting (Group 4). The aligner composite (GC Aligner Connect) and universal adhesive (GPremio Bond) were used to prepare the resin attachments. The bond strength was evaluated by micro-shear bond strength (SBS) testing (0.1 mm/min) after thermocycling, and the remnant adhesive was scored according to the resin attachment remnant index (RARI). The SBS data were analyzed using ANOVA and Tukey tests, and the RARI scores were analyzed using the chi-square test. Results: Group 1 had the lowest SBS, and group 2 had the highest SBS. There were significant differences between the groups in terms of bond strength (p<0.05). The RARI scores showed no significant differences, regardless of the pretreatment and ceramic type. Conclusion: The use of a self-etching primer increased the bond strength of resin attachments on LD ceramics. For zirconia ceramics, both ceramic primers are recommended for aligner attachment bonding.

7.
Dent Mater ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580561

RESUMO

OBJECTIVES: Lithium silicate-based glass ceramics have evolved as a paramount restorative material in restorative and prosthetic dentistry, exhibiting outstanding esthetic and mechanical performance. Along with subtractive machining techniques, this material class has conquered the market and satisfied the patients' needs for a long-lasting, excellent, and metal-free alternative for single tooth replacements and even smaller bridgework. Despite the popularity, not much is known about the material chemistry, microstructure and terminal behaviour. METHODS: This article combines a set of own experimental data with extensive review of data from literature and other resources. Starting at manufacturer claims on unique selling propositions, properties, and microstructural features, the aim is to validate those claims, based on glass science. Deep knowledge is mandatory for understanding the microstructure evolution during the glass ceramic process. RESULTS: Fundamental glass characteristics have been addressed, leading to formation of time-temperature-transformation (TTT) diagrams, which are the basis for kinetic description of the glass ceramic process. Nucleation and crystallization kinetics are outlined in this contribution as well as analytical methods to describe the crystalline fraction and composition qualitatively and quantitatively. In relation to microstructure, the mechanical performance of lithium silicate-based glass ceramics has been investigated with focus on fracture strength versus fracture toughness as relevant clinical predictors. CONCLUSION: Fracture toughness has been found to be a stronger link to initially outlined manufacturer claims, and to more precisely match ISO recommendations for clinical indications.

8.
Int J Pharm ; 656: 124051, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574956

RESUMO

The use of berberine hydrochloride (BCS class III) has limited application in psoriasis, when given as topical drug delivery systems, due to low permeability in the skin layer. Hence, berberine hydrochloride-loaded aquasome nanocarriers were developed for skin targeting, particularly epidermis (primary site of psoriasis pathophysiology) and enhance the skin permeability of berberine hydrochloride. Aquasomes were formulated using the adsorption method and characterized by structural morphology TEM, % drug adsorption, drug release profile (in-vitro and ex-vivo), in-vivo efficacy study and stability study. The reduced particle size and higher surface charge of SKF3 formulation (263.57 ± 27.78 nm and -21.0 ± 0.43 mV) showed improved stability of aquasomes because of the development of higher surface resistance to formation of aggregates. The adsorption of hydrophilic berberine and the non-lipidic nature of aquasomes resulted in % adsorption efficiency (%AE) of 94.46 ± 0.39 %. The controlled first-order release behavior of aquasomes was reported to be 52.647 ± 14.63 and 32.08 ± 12.78 % in in-vitro and ex-vivo studies, respectively. In-vivo studies demonstrated that topical application of berberine hydrochloride loaded aquasomes significantly alleviated psoriasis symptoms like hyperkeratosis, scaling and inflammation, due to the reduction in the inflammatory cytokines (IL-17 and IL-23). Therefore, aquasome formulation exhibits an innovative approach for targeted application of berberine hydrochloride in the management of psoriasis.

9.
ACS Appl Mater Interfaces ; 16(14): 17461-17473, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556803

RESUMO

The phosphate lithium-ion conductor Li1.5Al0.5Ti1.5(PO4)3 (LATP) is an economically attractive solid electrolyte for the fabrication of safe and robust solid-state batteries, but high sintering temperatures pose a material engineering challenge for the fabrication of cell components. In particular, the high surface roughness of composite cathodes resulting from enhanced crystal growth is detrimental to their integration into cells with practical energy density. In this work, we demonstrate that efficient free-standing ceramic cathodes of LATP and LiFePO4 (LFP) can be produced by using a scalable tape casting process. This is achieved by adding 5 wt % of Li2WO4 (LWO) to the casting slurry and optimizing the fabrication process. LWO lowers the sintering temperature without affecting the phase composition of the materials, resulting in mechanically stable, electronically conductive, and free-standing cathodes with a smooth, homogeneous surface. The optimized cathode microstructure enables the deposition of a thin polymer separator attached to the Li metal anode to produce a cell with good volumetric and gravimetric energy densities of 289 Wh dm-3 and 180 Wh kg-1, respectively, on the cell level and Coulombic efficiency above 99% after 30 cycles at 30 °C.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38647074

RESUMO

Ceramic coatings that can effectively prevent hydrogen permeation have a wide range of applications in hydrogen energy and nuclear fusion reactors. In this study, for the first time, the internal stress of Er2O3 coatings was found to be a key factor that could determine their hydrogen permeation resistance and lifespan. The internal stress was controlled by designing layered Er2O3 coatings. The internal stress increased with an increasing number of Er2O3 layers. When the number of layers was below 15, the increased internal stress did not adversely affect the coating performance and might help to increase its hydrogen permeation resistance. Although the overall thickness of the 15-layer Er2O3 coating was only 97 nm, its hydrogen permeation reduction factor (PRF) reached the highest value of 626, whereas a further increase in the internal stress detrimentally affected the ability of the coating to reduce hydrogen permeation. In addition, the experimental observations and simulation results revealed that the performance of the Er2O3 coatings was related to the hydrogen atoms that penetrated the coating, which weakened the Er-O bonds and consequently decreased the Er2O3 fracture limit. This study provides insights into the effects of internal stress and hydrogen penetration on the performance of ceramic coatings as hydrogen permeation barriers and will help guide strategies for the structure design of hydrogen permeation barriers possessing high PRFs and long lifespans.

11.
J Arthroplasty ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649064

RESUMO

INTRODUCTION: Total hip arthroplasty implant choice profoundly affects survivorship, complications, and failure modes. This study evaluates the long-term (average 18 year) outcomes of ceramic-on-ceramic hip arthroplasty using uncemented shells and stems. Despite an impressive 20-year cumulative percent revision (CPR) of 5.9%, the hydroxyapatite proximally coated femoral components evaluated in this study have seen declining use since 2003. METHODS: A review of 349 consecutive total hip arthroplasties from 1999 to 2007 were matched to 272 cases with registry data. A survivorship analysis included 274 hips (Group A) after excluding patients lost to follow-up and navigated cases. Group B comprised 135 patients who had complete datasets spanning a minimum of 15 years. RESULTS: Kaplan-Meier analysis identified a 95.6% survivorship plateau at 16 to 24 years, with no significant impact from age, sex, component size, or original pathology. In Group B, EuroQol-5 Dimensions-5 Levels (EQ5D5L) scores indicated favorable outcomes in mobility, self-care, activities, pain/discomfort, and anxiety/depression, with an EQ5D Visual Analogue Score (VAS) mean of 79.24. Functional scores, including the Harris Hip Score (HHS), Oxford Hip Score (OHS), and Forgotten Joint Score (FJS), showed positive outcomes. Radiologic assessments revealed no osteolysis or loose components, with a mean Engh score of 21.69. Dorr classification identified bone quality variations. Better Engh scores corresponded to higher levels of patient satisfaction. Age at surgery was correlated with better functional scores, while sex influenced various outcomes. CONCLUSION: This comprehensive study, spanning an average of 18.23 years, combined multiple patient-reported outcome measures (PROMs) with extensive clinical and radiologic follow-up. It reported a notably high survivorship rate for this implant combination but highlighted the declining use of the hydroxyapatite proximally coated femoral stem used in this study, potentially facing withdrawal risks in Australia.

12.
Adv Mater ; : e2405052, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652767

RESUMO

Protonic ceramic fuel cells (PCFCs) hold potential for sustainable energy conversion, yet their widespread application is hindered by the sluggish kinetics and inferior stability of cathode materials. Here, a facile and efficient reverse atom capture technique is developed to manipulate the surface chemistry of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) cathode for PCFCs. This method successfully captures segregated Ba and Sr cations on the PBSCF surface using W species, creating a (Ba/Sr)(Co/Fe/W)O3-δ (BSCFW)@PBSCF heterostructure. Benefiting from enhanced kinetics of proton-involved oxygen reduction reaction and strengthened chemical stability, the single cell using the optimized 2W-PBSCF cathode demonstrates an exceptional peak power density of 1.32 W cm-2 at 650 °C and maintains durable performance for 240 h. Theoretical calculations unveil that the BSCFW perovskite delivers lower oxygen vacancy formation energy, hydration energy, and proton transfer energy compared to the PBSCF perovskite. This protocol offers new insights into advanced atom capture techniques for sustainable energy infrastructures. This article is protected by copyright. All rights reserved.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38655785

RESUMO

Ca-substituted Ba1-xCaxMg2Al6Si9O30 ceramics were prepared to explore the relationships among their crystal structural parameters, phase compositions, dielectric properties, and coefficients of thermal expansion and applications in C-band antenna. The maximum solubility of Ba1-xCaxMg2Al6Si9O30 was located at x = 0.25, and Ba1-xCaxMg2Al6Si9O30 ceramics (0 ≤ x ≤ 0.25) crystallized in the space group P6/mcc. In Ba1-xCaxMg2Al6Si9O30 single-phase ceramics, εr was dominated by ionic polarizability and "rattling effects" of Ba2+ and Al(2)3+; Q × f was controlled by the roundness of [Si4Al2O18] inner rings and total lattice energy; and τf was affected by the bond valence of Si/Al(1)-O(1). Notably, the low average coefficients of thermal expansion (2.668 ppm/°C) at -150 °C ≤ T ≤ 850 °C and near-zero coefficients of thermal expansion (1.254 ppm/°C) at -150 °C ≤ T ≤ 260 °C were achieved for the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic. Optimum microwave and terahertz dielectric properties were obtained for the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic with εr = 5.80, Q × f = 31,174 at 13.99 GHz, τf = -7.10 ppm/°C, and εr = 5.71-5.85 at 0.2 THz ≤ f ≤ 1.0 THz. Also, the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic substrate had been designed as a C-band patch antenna with a high simulated radiation efficiency (87.76%) and gain (6.30 dBi) at 7.70 GHz (|S11| = -38.41 dB).

14.
Environ Sci Ecotechnol ; 21: 100416, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38584706

RESUMO

Water reuse is an effective way to solve the issues of current wastewater increments and water resource scarcity. Ultrafiltration, a promising method for water reuse, has the characteristics of low energy consumption, easy operation, and high adaptability to coupling with other water treatment processes. However, emerging organic contaminants (EOCs) in municipal wastewater cannot be effectively intercepted by ultrafiltration, which poses significant challenges to the effluent quality and sustainability of ultrafiltration process. Here, we develop a cobalt single-atom catalyst-tailored ceramic membrane (Co1-NCNT-CM) in conjunction with an activated peroxymonosulfate (PMS) system, achieving excellent EOCs degradation and anti-fouling performance. An interfacial reaction mechanism effectively mitigates membrane fouling through a repulsive interaction with natural organic matter. The generation of singlet oxygen at the Co-N3-C active sites through a catalytic pathway (PMS→PMS∗→OH∗→O∗→OO∗→1O2) exhibits selective oxidation of phenols and sulfonamides, achieving >90% removal rates. Our findings elucidate a multi-layered functional architecture within the Co1-NCNT-CM/PMS system, responsible for its superior performance in organic decontamination and membrane maintenance during secondary effluent treatment. It highlights the power of integrating Co1-NCNT-CM/PMS systems in advanced wastewater treatment frameworks, specifically for targeted EOCs removal, heralding a new direction for sustainable water management.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38591503

RESUMO

OBJECTIVES: In-office and lab milled prostheses are the staple for indirect restorations. It is therefore critical to determine their long-term bonding durability. METHODS: CAD/ CAM blocks of two classes of restorative materials: 1) a nano-ceramic reinforced polymer matrix (NCPM) and, 2) a polymer-infiltrated ceramic network (PICN) were bonded using four different universal adhesives (UA) and silane systems. A lithium disilicate glassceramic (LDS) was used as a reference. The blocks were bisected and bonded with different UA/resin-cement pairs. Bonded blocks were then cut into 1.0x1.0x12.0 mm bar specimens for microtensile bond testing. Half the bars were subjected to bond strength testing immediately and the other half after aging by 50,000 thermal cycles between 5°C and 55°C. ANOVA and post-hoc tests were used to compare mean bond strength among groups. RESULTS: NCPM presented consistently high bond strength regardless of bonding techniques, while the bond strength of PICN and LDS were lower when bonded with UA relative to traditional silanes. The more hydrophilic UA produced higher bond strengths. DISCUSSION: Glass-ceramics exhibited lower bond strength with UA than the conventional etch-rinse-silane techniques. However, UAs preserved bonding interface in the long-term. SIGNIFICANCE: NCPM displayed superior bond strength relative to PICN and LDS regardless of the type of adhesives and bonding techniques.

16.
J Pharm Bioallied Sci ; 16(Suppl 1): S356-S358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595439

RESUMO

Introduction: The esthetic during the various orthodontic treatments has led to the invention of the brackets. When different ceramic brackets and archwires are used, the different frictional forces may result in the different outputs. Hence, in the present study, we evaluated and compared the frictional resistance between eight standard monocrystalline ceramic bracket models and each of the archwires of four different alloys. Materials and Methods: Frictional force was tested using Instron testing machine, in vitro, for eight types of monocrystalline ceramic bracket, and four types of archwires beta-titanium, NiTi, copper-nickel-titanium, and stainless steel statistical analysis were done using various tools, and significance value of <0.05 was considered. Results: Ormco and AO (Radiance) monocrystalline ceramic brackets created lesser frictional resistance than other monocrystalline ceramic brackets. Stainless steel archwire generates lesser static friction. Beta-titanium archwire created higher static friction. A 0.017 × 0.025 inch stainless steel archwire generates lesser static friction to 0.019 × 0.025 inch TMA. Conclusion: It can be concluded that Ormco and AO (Radiance) monocrystalline ceramic brackets, with stainless steel archwires and of size 0.017 × 0.025 inch, can generate better forces when used for the orthodontic tooth movements.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38594815

RESUMO

OBJECTIVES: Clinical data on all-ceramic screw-retained implant crowns (SICs) luted on titanium base abutments (TBAs) over more than 3 years are sparse. This study aimed to evaluate the clinical performance and potential risk factors for these restorations. MATERIALS AND METHODS: Analysis took place based on the medical patient-records of three dental offices. Implant survival and prosthetic complications over time were evaluated. The study included SICs in premolar and molar regions made from monolithic lithium disilicate ceramic (M_LiDi) or veneered zirconia (V_ZiO) luted on a TBA documented over an observation time of at least 3 years. Survival and complication rates were calculated and compared by a log-rank test. Cox-Regressions were used to check potential predictors for the survival (p < .05). RESULTS: Six hundred and one crowns out of 371 patients met the inclusion criteria and follow-up period was between 3.0 and 12.9 (mean: 6.4 (SD: 2.1)) years. Over time, six implants had to be removed and 16 restorations had to be refabricated. The estimated survival rates over 10 years were 93.5% for M_LiDi and 95.9% for V_ZiO and did not differ significantly among each other (p = .80). However, V_ZiO showed significantly higher complication rates (p = .003). Material selection, sex, age, and implant diameter did not affect the survival of investigated SICs but crown height influences significantly the survival rate (hazard ratio, HR = 1.26 (95%CI: 1.08, 1.49); p = .043). CONCLUSIONS: Screw-retained SICs luted on TBAs that were fabricated from monolithic lithium disilicate ceramic or veneered zirconia showed reliable and similar survival rates. Increasing crown heights reduced survival over the years.

18.
J Esthet Restor Dent ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623053

RESUMO

OBJECTIVES: The objective of this review was to assess clinical trials that have examined the materials, design, and bonding of ceramic cantilevered resin-bonded fixed dental prostheses (RBFDPs) as a potential option for replacing missing anterior teeth. The evaluation primarily focuses on the rate of restoration failure and clinical complications. MATERIALS AND METHODS: A thorough search of databases including PubMed/MEDLINE, Scopus, and the Cochrane Library, was conducted. The most recent search was performed in October 2023. Clinical studies that compared ceramic cantilevered RBFDPs with double retainers or cantilevered RBFDPs using different ceramic materials or bonding systems were included. The outcome measures considered were restoration failure and complication rates. RESULTS: Twelve studies met the eligibility criteria. The pooled data showed a statistically significant decrease in complication events when using cantilever designs compared with double retainer designs (p < 0.05); however, there were no differences found between the two designs in terms of restoration failure. The complication and failure rate of cantilever RBFDPs did not show a statistically significant difference with or without ceramic primer application before luting with phosphate monomer-containing luting resin (p > 0.05). CONCLUSIONS: Ceramic cantilevered RBFDPs have lower complication rates compared with those with double retainers. The use of a ceramic primer prior to luting composite resin for ceramic cantilevered RBFDPs decreases the occurrence of complications and failures, although this effect was not statistically significant. Additional research is required to confirm these findings. Glass ceramic cantilever RBFDPs showed a decrease in success after 6 years, requiring ongoing monitoring, but both zirconia and glass-infiltrated alumina cantilever RBFDPs have demonstrated durability with excellent long-term success and survival rates for up to 10 and 15 years. CLINICAL SIGNIFICANCE: Cantilever ceramic RBFDPs in the anterior region are a less invasive and valuable treatment option, providing good esthetic results.

19.
Dent Mater J ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583992

RESUMO

To assess color and translucency change (∆E00 and ∆TP) of 3D-printed (Varseosmile crown plus, VS) and milled resin-ceramic hybrid material (Cerasmart, CS) compared to enamel (E) when immersed in distilled water (DW) and coffee (C). Sixty VS, CS, and E specimens were immersed in DW and C for 30 days. Statistics analysis using t-test and one-way ANOVA at p≤0.05. ∆E00 of VS, CS, and E significantly increased when immersed in coffee (p<0.001, p<0.001 and p=0.01, respectively). E has more ∆E00 than VS and CS (p<0.001). The translucency of VS and CS was reduced after water and coffee immersion. The translucency of E was increased after immersion in water and coffee. ∆TP of VS, CS, and E were not different between immersion in water and coffee at p=0.08, p=0.43 and p=0.72, respectively. Therefore, DW and C have distinct effects on the ∆E00 and ∆TP among VS, CS and E.

20.
Materials (Basel) ; 17(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612124

RESUMO

To address the issue of the lack of red light in traditional Ce3+: YAG-encapsulated blue LED white light systems, we utilized spark plasma sintering (SPS) to prepare spinel-based Cr3+-doped red phosphor ceramics. Through phase and spectral analysis, the SPS-sintered ZnAl2O4: 0.5%Cr3+ phosphor ceramic exhibits good density, and Cr3+ is incorporated into [AlO6] octahedra as a red emitting center. We analyzed the reasons behind the narrow-band emission and millisecond-level lifetime of ZAO: 0.5%Cr3+, attributing it to the four-quadrupole interaction mechanism as determined through concentration quenching modeling. Additionally, we evaluated the thermal conductivity and thermal quenching performance of the ceramic. The weak electron-phonon coupling (EPC) effects and emission from antisite defects at 699 nm provide positive assistance in thermal quenching. At a high temperature of 150 °C, the thermal conductivity reaches up to 14 W·m-1·K-1, and the 687 nm PL intensity is maintained at around 70% of room temperature. Furthermore, the internal quantum efficiency (IQE) of ZAO: 0.5%Cr3+ phosphor ceramic can reach 78%. When encapsulated with Ce3+: YAG for a 450 nm blue LED, it compensates for the lack of red light, adjusts the color temperature, and improves the color rendering index (R9). This provides valuable insights for the study of white light emitting diodes (WLEDs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...